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We investigate the current-induced spin polarization in the two-dimensional hole gas �2DHG� with the
structure inversion asymmetry. By using the perturbation theory, we rederive the effective k-cubic Rashba
Hamiltonian for 2DHG and the generalized spin operators accordingly. Then based on the linear response
theory, we analytically and numerically calculate the current-induced spin polarization with the disorder effect
considered. We have found that, quite different from the two-dimensional electron gas, the spin polarization in
2DHG linearly depends on Fermi energy in the low-doping regime, and with increasing Fermi energy, the spin
polarization may be suppressed and even changes its sign. We predict a pronounced peak of the spin polar-
ization in 2DHG once the Fermi level is somewhere between the minimum points of two spin-split branches of
the lowest light-hole subband. We discuss the possibility of measurements in experiments as regards the
temperature and the width of quantum wells.
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I. INTRODUCTION

In order to reduce the electric leakage and to meet the
challenge brought about by the reduced physical size of the
future nanoelectronics, the replacement of the electron
charge with the spin degree of freedom in the electronic
transport is being explored. This is the ambitious goal of
researchers in the field of spintronics.1–3 One of the basic
issues in this field is how to generate the polarized spin in
devices. In a straightforward way, the spin injection from
ferromagnetic layers may provide a possible solution to this
problem if the interface mismatch problem can be avoided,
but it is more desirable to directly generate spin polarization
by electric means in devices because of its easy controllabil-
ity and compatibility with the standard microelectronics
technology.1–3 The spin-orbit coupling �SOC� in semiconduc-
tors, which relates the electron spin to its momentum, may
provide a controllable way to realize such a purpose. Based
on this idea, the phenomenon of current-induced spin polar-
ization �CISP� has recently attracted extensive attention of a
lot of research groups.4–26

As early as the 1970s, the CISP due to the spin-orbit
scattering near the surface of semiconductor thin films was
predicted by Dyakonov and Perel.4 Restricted by experimen-
tal conditions at that time, this prediction was ignored until
the beginning of the 1990s. With the development of sample
fabrication and characterization technology in low-
dimensional semiconductor systems, it was realized that such
phenomena could also exist in quantum wells and hetero-
structures with the structure or bulk inversion asymmetry.5,6

Later, many interesting topics about CISP have been raised,
such as the joint effect of the Rashba and Dresselhaus SOC
mechanism,7 vertex correction,5–8 quantum correction,9,10

and resonant spin polarization.11 Experimentally, CISP was
first observed by Silov et al.12 in a two-dimensional hole gas
�2DHG� by using the polarized photoluminescence.27–29

When inputting an in-plane current into the 2DHG system,
they observed a large optical polarization in photolumines-
cence spectra.12 Later, Kato et al.13,14 demonstrated the exis-

tence of the CISP in strained nonmagnetic semiconductors,
and Sih et al.15 detected the CISP in the two-dimensional
electron gas �2DEG� in �110� AlGaAs quantum well.15 The
CISP was also found in ZnSe epilayers even up to room
temperature.16 Very recently, the converse effect of CISP has
been clearly shown by Yang et al.17 experimentally, and the
spin photocurrent has also been observed.18–20

So far, most theoretic investigations about the CISP deal
with the electron SOC systems.4–10,21–26,30–32 Thus, the CISP
in the 2DHG system as shown in the experiments of Silov et
al.12 was also interpreted in terms of the linear-k Rashba
coupling of the 2DEG systems with several parameters ad-
justed. As we shall show later, this treatment is not appropri-
ate for 2DHG. Unlike the electron system, the hole state in
the Luttinger–Kohn Hamiltonian33 is a spinor of four com-
ponents. As each component is a combination of spin and
orbit momentum, the spin of a hole spinor is not a conserved
physical quantity. Therefore, the “spintronics” for hole gas
is, in fact, a combination of spintronics and orbitronics.34,35

If only the lowest heavy-hole �HH1� subband is concerned,
by projecting the multiband Hamiltonian of 2DHG with
structural inversion asymmetry into a subspace spanned by
�� 3

2 � mostly relevant with the HH1 states, we can obtain the
k-cubic Rashba model.36–41 Here, we emphasize in this low-
est heavy-hole subspace that the spin operators are no longer
represented by three Pauli matrices, because the “generalized
spin” we shall adopt is a hybridization of spin and orbit
angular momentum.34 In deriving the effective Hamiltonian
from the Luttinger–Kohn Hamiltonian by the perturbation
and truncation procedure to higher orders, one must take care
of the corresponding transformation for the spin operator in
order to obtain the correct expression. In the following, we
will use the terminology generalized spin, or the “spin” for
short, to denote the total angular momentum in the spin-orbit
coupled systems.

The aim of the present paper is to investigate the CISP of
a 2DHG in a more rigorous way. Namely, we will derive the
k-cubic Rashba model and the corresponding spin operators
for holes, and on this basis, we will present both analytical
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and numerical results for the CISP in a 2DHG. This paper is
organized as follows. In Sec. II, the general formalism and
the Hamiltonian for the 2DHG with structural inversion
asymmetry are given. In Sec. III, in the low-doping regime,
with the perturbation theory, the Hamiltonian and spin opera-
tors in the lowest heavy-hole subspace are derived and ap-
plied to the analytical calculation of the CISP in a 2DHG. In
Sec. IV, we will show that the numerical calculations agree
well with the analytical results at the low-doping regime,
while in the high-doping regime, the numerical results pre-
dict some additional features of CISP. Particularly, we pre-
dict a pronounced CISP peak when the Fermi energy lies a
little above the energy minimum of the lowest light-hole
�LH1� subband. Finally, a brief summary is drawn.

II. FORMALISM

A. Hole Hamiltonian

A p-doped quantum well system with structural inversion
asymmetry can be described as the isotropic Luttinger–Kohn
Hamiltonian with a confining asymmetrical potential,

Ĥ = ĤL + V̂c�z� + V̂a�z� . �1�

Here, in order to compare the analytical results with the nu-
merical one, the confining potential along the z direction
Vc�z� is taken as

V̂c�z� = �0, − Lz/2 � z � Lz/2
� otherwise,

� �2�

where Lz is the well width of the quantum well. The asym-
metrical potential, which stems from a built-in electric field

F via the gate voltage or � doping, is V̂a�z�=eFz, which
breaks the inversion symmetry and lifts the spin doublet de-
generacy.

Let Ŝ be the generalized spin operator of a hole state, and

Ŝz be the z component of Ŝ, the isotropic Luttinger–Kohn

Hamiltonian ĤL in the �S ,Sz� representation �four basis kets
written in the sequence of �� 3

2 � , � 1
2 � ,−� 1

2 � , �− 3
2 ��� is expressed

as

ĤL =	
P R T 0

R† Q 0 T

T† 0 Q − R

0 T† − R† P

 , �3�

with

P =
�2

2m0
���1 + �2�k2 + ��1 − 2�2�kz

2� , �4�

Q =
�2

2m0
���1 − �2�k2 + ��1 + 2�2�kz

2� , �5�

R = −
�23�2

m0
k−kz, �6�

T = −
�23�2

2m0
k−

2 , �7�

where �1 ,�2 are the Luttinger parameters, m0 is the free
electron mass, the in-plane wave vector k= �kx ,ky�, denoted
in the polar coordinate as k��k ,��, k��kx� iky, and kz
=−i� /�z. The other terms, such as the anisotropic term, C
terms, or hole Rashba term,40–42 have only negligible effects
and are omitted in our calculation. Correspondingly, the x, y,
and z components of the spin − 3

2 operator respectively
reads43,44

Ŝx =
1

2	
0 3 0 0

3 0 2 0

0 2 0 3

0 0 3 0

 , �8�

Ŝy =
i

2	
0 − 3 0 0

3 0 − 2 0

0 2 0 − 3

0 0 3 0

 , �9�

Ŝz =
1

2	
3 0 0 0

0 1 0 0

0 0 − 1 0

0 0 0 − 3

 . �10�

Here, we stress again that the spin of the 3
2 spinor is actually

its total angular momentum, which is a linear combination of
spin and orbit angular momentum of a valence band electron.
In polarized optical experiments, such as polarized
photoluminescence27–29 or Kerr–Faraday rotation,13,14 it is
appropriate to introduce such a generalized spin.

For the infinitely confining potential, we expand the
eigenfunction 	
 associated with the 
th hole subband in
terms of confined standing waves as

	
�k� = �
n,�h

an,�h


 �k�
1

2�
eik·r�n,�h�h, �11�

with

�n,�h� = 2

Lz
sin�n��z + Lz/2�

Lz
���h� , �12�

where r= �x ,y�, n is the confinement quantum number for the
standing wave along the z direction, and �h denotes the �h
component of the hole ��h=3 /2,1 /2,−1 /2,−3 /2�. Since we
are only interested in the low energy physics, a finite number
of n will result in a reasonable accuracy and the effective
Hamiltonian is reduced into a square matrix with a dimen-
sion of 4n. In this way, we analytically or numerically obtain
the hole subband structure.
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B. Expression for current-induced spin polarization

In the framework of the linear response theory, the elec-
tric response of spin polarization in a weak external electric
field E can be formulated as11

�Ŝ� = �
�

��E�, �13�

where �Ŝ� is the thermodynamically averaged value of the
spin density. The electric spin susceptibility �� can be cal-
culated by the Kubo formula.45 By the Green function for-
malism, the Bastin version of the Kubo formula46 reads

�� =
ie�

2�
� dEf�E�Tr�Ŝ�dGR

dE
v�A − Av�

dGA

dE
��

c
,

�14�

where GR and GA are the retarded and advanced Green func-
tion, respectively, A= i�GR−GA� is the spectral function, f�E�
is the Fermi distribution function, v� is the velocity operator
along the � direction, and the bracket �¯�c represents the
average over the impurity configuration.

To take the vertex correction into account, we use the
Streda–Smrcka division of the Kubo formula,46,47

�� = −
e�

2�
� dE

�f�E�
�E

Tr�ŜGR�EF�v�GA�EF��c, �15�

in which we retain only the nonanalytical part and neglect
the analytical part, because the latter is much less important
in the present case. In the following, we will use Eq. �15� to
analytically calculate the electric spin susceptibility �ESS�
with the vertex correction considered; meanwhile, we will
carry out the numerical calculation with Eq. �14� in the first-
order Born approximation. We shall show that the analytical
and numerical results are in good agreement with each other
in the regime of low hole density.

C. Symmetry

The general properties of �� will be critically determined
by the symmetry of the system. For the two-dimensional
system we investigate, the index ��� in Eq. �13� is simply
chosen to be x or y in the following. Without the asymmetri-
cal potential Va, the Hamiltonian �1� is invariant under the
space inversion transformation

x → − x, y → − y, z → − z ,

Ŝx → Ŝx, Ŝy → Ŝy, Ŝz → Ŝz, �16�

if the point of origin of the z axis is set at the midplane of the
quantum well. By applying the space inversion transforma-
tion �16� to Eq. �13�, we have

�Ŝ� = ��E� → �Ŝ� = − ��E�, �17�

whereby ��=−��. This implies that no CISP appears when
the inversion symmetry exists in the system. So the asym-
metrical potential Va is crucial for the CISP.

In the presence of an asymmetrical potential Va, the
Hamiltonian �1� is invariant versus the rotation along the z

axis with �
2 in both the real space and the spin space,

x → y, y → − x, z → z ,

Ŝx → Ŝy, Ŝy → − Ŝx, Ŝz → Ŝz. �18�

With the above transformations �18�, Eq. �13� will give

�Ŝx� = �xyEy → �Ŝy� = − �xyEx, �19�

�Ŝx� = �xxEx → �Ŝy� = �xxEy . �20�

By combining with �Ŝy�=�yxEx and �Ŝy�=�yyEy, we get

�xy = − �yx, �21�

�xx = �yy , �22�

which are a direct consequence of the rotation symmetry
along the z axis.

III. ANALYTICAL RESULTS FOR CURRENT-INDUCED
SPIN POLARIZATION IN A TWO-DIMENSIONAL

HOLE GAS

In the low hole density regime, an effective Hamiltonian
can be obtained by projecting the Hamiltonian �1� into the
subspace spanned by the lowest heavy-hole states, which, by
using the truncation approximation and projection perturba-
tion method,40–42,48–52 is reduced to the widely used k-cubic
Rashba model. More importantly, the corresponding spin op-
erators in the subspace will be obtained properly and the ESS
of 2DHG with the impurity vertex correction will be worked
out. Then we will compare and contrast the different behav-
iors of the CISP in the 2DEG and 2DHG in this section.

A. k-cubic Rashba model

To obtain an approximate analytical expression, we take
the following procedure. First, we expand a hole state in
terms of eight basis wave functions associated with �n ,�h�
�n=1,2 and �h= 3

2 , 1
2 ,− 1

2 ,− 3
2 � �Eq. �12��. Then for a given k,

we may express the Hamiltonian �1� in terms of an 8�8
matrix, which by the perturbation procedure can be further
projected into the subspace spanned by the �1, 3

2 � and
�1,− 3

2 � states. Thus, we obtain the following 2�2 matrix
�see Appendix A for details�:

Ĥk3 =
�2k2

2mh
+ i�k−

3�+ − k+
3�−� , �23�

where the Pauli matrix ��� 1
2 ��x� i�y�, the effective mass

is renormalized to

mh = m0��1 + �2 −
256�2

2

3�2�3�1 + 10�2�
�−1

, �24�

and the k-cubic Rashba coefficient

 =
512eFLz

4�2
2

9�6�3�1 + 10�2���1 − 2�2�
. �25�

Note that Eq. �23� is just the k-cubic Rashba model, in which
the Rashba coefficient  is proportional to the asymmetrical
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potential strength F, in agreement with the results by
Winkler.40 We can rewrite the k-cubic Rashba Hamiltonian
�23� as

Ĥk3 = ��k� + �
i=x,y,z

di�k��i, �26�

where dx=ky�3kx
2−ky

2�, dy =kx�3ky
2−kx

2�, dz=0, and ��k�
= �2k2

2mh
. The eigenvalue associated with the spin index � ��

= �1� is

E��k� = ��k� + �k3, �27�

with the eigenfunction

�k��r� =
eik·r

2AS

� i

�ei3� � , �28�

where AS is the area of the system.
The k-cubic Rashba model has been widely used to study

the spin Hall effect in 2DHG;36–38,53 however, insufficient
attention has been given to the corresponding spin operators.
For example, although Hamiltonian �23� is written in terms
of the Pauli matrices �, the � matrix is no longer directly
related to the spin. The correct spin operators in the k-cubic
Rashba model, as described in Appendix A, are expressed as

S̃x = �− S0ky S1k−
2

S1k+
2 − S0ky

� , �29�

S̃y = � S0kx − iS1k−
2

iS1k+
2 S0kx

� , �30�

S̃z =
3

2
�z, �31�

in which

S0 =
512�2Lz

4eFm0

9�6�2�3�1 + 10�2���1 − 2�2�
, �32�

S1 = � 3

4�2 −
256�2

2

3�4�3�1 + 10�2�2�Lz
2. �33�

Clearly, the coefficient S0 and the Rashba coefficient  have
the same dependence on F and Lz, thus we have

S0 =
m0

�2�2
. �34�

Sz is related to �z, while Sx�Sy� consists of two parts: the
diagonal part linear in ky�kx� and the nondiagonal part qua-
dratic in k�. The diagonal part, which relates the wave vector
ky �kx� to Sx �Sy�, will give the main contribution to CISP.

The velocity operator in the k-cubic Rashba model can also
be obtained by the projection technique,

ṽx =
�kx

mh
+

3i

�
�k−

2�+ − k+
2�−� , �35�

which is consistent with the relation ṽx= 1
��Hk3 /�kx.

B. Impurity vertex correction

Now, we calculate the ESS in the framework of the linear
response theory based on the k-cubic Rashba model �23�. In
doing this, we take the vertex correction of impurities into
account. The free retarded Green function has the form

G0
R�k,E� =

E − ��k� + �
i
di�i

�E − E+ + i���E − E− + i��
, �36�

where � is an infinitesimal positive number. We assume im-
purities to be distributed randomly in the form Vr�r�
=V0�i��r−Ri�, where V0 is the strength. With the Born ap-
proximation, the self-energy, diagonal in the spin space, is
given by

Im��0
R�k,E�� =

niV0
2�

2
�D+ + D−� , �37�

where ni is the impurity density, and the density of states for
two spin-split branches of the HH1 subband reads

D��k� =
mh

2��2�1 �
3mhk

�2 �−1

. �38�

So the configuration-averaged Green function is given by

GR�k,E� =

E − ��k� + i�0 + �
i
di�i

�E − E+ + i�0��E − E− + i�0�
, �39�

where �0=−Im��0
R�k ,E��= �

2� , and � is the momentum relax-
ation time. In the ladder approximation, the Streda–Smrcka
formula �15� for the ESS � will reduce to

�� = e�� dE

2�
�−

�f�E�
�E

� � d2k

�2��2Tr�S̃GR��GA� ,

�40�

where S̃ is given by Eqs. �29�–�31� and the vertex function
���k� satisfies the self-consistent equation45

�� = ṽ� + niV0
2� d2k

�2��2GR�k,E���GA�k,E� . �41�

Suppose the electric field is along the x direction, we solve
the vertex function �x iteratively and get the first-order cor-
rection to �x as

LIU et al. PHYSICAL REVIEW B 77, 125345 �2008�

125345-4



��x
�1� = niV0

2� kdkd�

�2��2

�E − ��k� ik−
3

− ik+
3 E − ��k�

�	
�kx

mh

3i

�
k−

2

− 3i

�
k+

2 �kx

mh


�E − ��k� ik−
3

− ik+
3 E − ��k�

�
��E − E+�2 + �0

2���E − E−�2 + �0
2�

. �42�

Note that E� and �0 are independent of �, and all the terms
in the numerator of the integrand contain something like
exp��i��, etc., so the integral over � from 0 to 2� in Eq.
�42� vanishes. Furthermore, the higher-order terms for the
vertex correction also vanish, which is quite different from
the vertex correction in the linear-k Rashba model.8 The
same situation occurs for �y. The above results agree with
the previous work.37,53 The calculation of the spin polariza-
tion is straightforward, and to the lowest order in Fermi mo-
mentum k�

F and , only the term proportional to S0 contrib-
utes to the spin polarization. The final result reads

�yx = − �xy =
eS0�mhEF

�3�
= S0nh

e�

�
, �43�

�xx = �yy = 0, �44�

where nh is the hole density, EF is the Fermi energy, and only
the leading term in EF is retained.

In the first-order Born approximation, the longitudinal
conductivity of a 2DHG is equal to

�xx =
e2�EF

�2�
. �45�

Thus, by combining expressions �43� and �45�, we have the
ratio

�S̃y�
�jx�

=
�yx

�xx
=

S0mh

e�
=

m0mh

e�3�2
. �46�

The formula above can also be obtained from the expres-
sion of the spin operator �30� and the velocity operator �35�
by neglecting the nondiagonal part in the spin operator and

the anomalous part in the velocity operator, i.e., S̃y �S0kx
and jx�e�kx /mh. Obviously, this ratio depends only on the
material parameters, but not on the impurity scattering or the
carrier density in the low density limit. Meanwhile, since
both the current and spin polarization can be experimentally
measured, relation �46� may be invoked to experimentally
obtain the k-cubic Rashba coefficient .

C. Comparing the current-induced spin polarization of a two-
dimensional hole gas and a two-dimensional electron gas

The CISP of a 2DHG manifests several features different
from that of 2DEG. To illustrate this, let us first take a look
at the CISP of a 2DEG. The electric spin susceptibility is
given by �yx=2e�eme /�2, where me is the effective mass of
an electron and e is the linear Rashba coefficient. The ver-

tex correction due to the linear Rashba spin splitting is
nontrivial.8,54 With the longitudinal conductivity of 2DEG
�xx=e2�EF /�2�, we find that the ratio of spin polarization to
the current for the 2DEG is

�Sy
�e��

�jx�
=

�yx

�xx
=

2�mee

eEF
. �47�

Compared with Eq. �46�, we find that the CISP of a 2DEG is
inversely proportional to the Fermi energy. This means that
the ratio for the 2DEG decreases for heavier doping. This
different Fermi-energy dependence stems from the different
types of spin orientation for a 2DEG and a 2DHG.

The spin orientation, which is the expectation value of the
spin operator S for an eigenstate, is given by

�k��S̃x�k�� = − S0k sin � + �k2S1 sin � , �48�

�k��S̃y�k�� = S0k cos � − �k2S1 cos � , �49�

�k��S̃z�k�� = 0, �50�

for a 2DHG, and

�k��Sx
�e��k�� = − � sin � , �51�

�k��Sy
�e��k�� = � cos � , �52�

�k��Sz
�e��k�� = 0, �53�

for a 2DEG. In the following, we take �S�k� as short for the
spin orientation above. Equations �51� and �52� show that the
spin orientation for a 2DEG depends on the spin index �,
which has opposite values for the two spin-splitting states.
However, for a 2DHG, the first term in Eqs. �48� and �49� is
independent of the spin index �. Hence, when k is small, this
spin-index-independent term will dominate over the k2 term,
leading to the same spin orientation for the hole state with
opposite �. This is quite different from the electron case. The
following interesting question may be raised: Why do holes
with opposite � have the same spin orientation? In the fol-
lowing, we will analyze this problem and try to find the
origin of this particular spin orientation for a 2DHG.

Let us first have a look at the electron case. Due to the
spin-orbit coupling and inversion asymmetry, the twofold de-
generacy of a subband is lifted. For a given k, we denote two
spin-split states as �+ �=cos �

2e−i	� 1
2 �z+sin �

2 �− 1
2 �z and �−�

=−sin �
2e−i	� 1

2 �z+cos �
2 �− 1

2 �z, where �� 1
2 �z are the eigenstates

of �z. It is easy to verify that ��� and ��� have opposite spin
orientations, namely, �+��� �+ �=−�−��� �− �.
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Similar to a 2DEG, two spin-split hole states in the sub-
space �� 3

2 � can be constructed as �+ �=cos �
2e−i	� 3

2 �
+sin �

2 �− 3
2 � and �−�=−sin �

2e−i	� 3
2 �+cos �

2 �− 3
2 �. By Eqs. �8�

and �9�, we can verify that the matrix elements of Ŝx and Ŝy

between � 3
2 � and �− 3

2 � vanish, and ���Ŝx�� �= ���Ŝy�� �=0.
This indicates that in the subspace �� 3

2 �, any superposition
of �� 3

2 � will not give rise to the spin orientation along the x
or y direction. Thus, it is necessary to take the higher order
perturbation into account, in particular, the perturbation from
coupling between �� 3

2 � and �� 1
2 �.

Now we give the outline on the origin of the hole spin
orientation by the perturbation procedure �a more systematic
method can be found in Appendix A�. Suppose the HH1�
states �hh,� can be expanded as

�hh,� = �hh,�
�0� + �hh,�

�1� + �hh,�
�2� + ¯ , �54�

where �hh,�
�i� denotes the ith-order perturbed wave function.

With the basis �n ,�h� �Eq. �12�� and the zeroth-order term

�hh,�
�0� = �1, �

3
2� , �55�

we have the first-order correction as

�hh,+
�1� =

�2, 1
2��2, 1

2 �R†�1, 3
2�

E1,3/2 − E2,1/2
+

�1,− 1
2��1,− 1

2 �T†�1, 3
2�

E1,3/2 − E1,−1/2

+
�2, 3

2��2, 3
2 �Va�1, 3

2�
E1,3/2 − E2,3/2

, �56�

�hh,−
�1� =

�1, 1
2��1, 1

2 �T�1,− 3
2�

E1,−3/2 − E1,1/2
−

�2,− 1
2��2,− 1

2 �R�1,− 3
2�

E1,−3/2 − E2,−1/2

+
�2,− 3

2��2,− 3
2 �Va�1,− 3

2�
E1,−3/2 − E2,−3/2

, �57�

and the second-order correction reads

�hh,+
�2� =

�1, 1
2��1, 1

2 �Va�2, 1
2��2, 1

2 �R†�1, 3
2�

�E1,3/2 − E1,1/2��E1,3/2 − E2,1/2�

+
�1, 1

2��1, 1
2 �R†�2, 3

2��2, 3
2 �Va�1, 3

2�
�E1,3/2 − E1,1/2��E1,3/2 − E2,3/2�

+ ¯ , �58�

and

�hh,−
�2� = −

�1,− 1
2��1,− 1

2 �Va�2,− 1
2��2,− 1

2 �R�1,− 3
2�

�E1,−3/2 − E1,−1/2��E1,−3/2 − E2,−1/2�

−
�1,− 1

2��1,− 1
2 �R�2,− 3

2��2,− 3
2 �Va�1,− 3

2�
�E1,−3/2 − E1,−1/2��E1,−3/2 − E2,−3/2�

+ ¯ .

�59�

Here, En,�h
stands for the eigenenergy of the state �n ,�h�.

From Eqs. �8� and �9�, we can see that when n=1, the only

nonvanishing terms are �1, 3
2 �Ŝx�y��1, 1

2 � and �1,− 3
2 �Ŝx�y��1,

− 1
2 �. Up to the second-order perturbation, two types of terms

can contribute to ��hh,��Ŝx�y���hh,��.
The first type stems from the first-order perturbation by

the T operator in the Luttinger Hamiltonian �Eq. �3��, which

couples �1,− 1
2 � ��1, 1

2 �� to �1,− 3
2 � ��1, 3

2 �� �the second term in

Eq. �56� or �57��. So the matrix element ��hh,+�Ŝx��hh,−� is
equal to

��hh,+
�0� �Ŝx��hh,−

�1� � + ��hh,+
�1� �Ŝx��hh,−

�0� � =
3

4�2Lz
2k−

2 . �60�

It is obvious that the above formula is just the off-diagonal

element in the S̃x matrix �Eq. �29��, with the first term in
square bracket of S1 �Eq. �33�� retained. This gives the
quadratic-k dependence of the spin orientation shown as the
second term in Eq. �48�.

The second type comes from a joint action of the R in the
Luttinger Hamiltonian and the asymmetrical potential Va
�see Eqs. �58� and �59��. The second-order perturbation con-

tributes to ��hh,+�Ŝx��hh,+� with

��hh,+
�0� �Ŝx��hh,+

�2� � + ��hh,+
�2� �Ŝx��hh,+

�0� � + ��hh,+
�1� �Ŝx��hh,+

�1� �

= −
512�2Lz

4eFm0ky

9�6�2�3�1 + 10�2���1 − 2�2�
. �61�

This term is just the diagonal element in Eq. �29�, which
leads to the first term in Eq. �48� and is responsible for the
identical spin orientation for two spin-splitting hole states in
the small k regime.

The spin splitting between HH� depends on the coupling
between �1, 3

2 � and �1,− 3
2 � through higher-order perturbation.

Different from the electron case, the direct coupling will not
cause the x-direction or y-direction spin orientation. Instead,
it results from the coupling between �1, 3

2 � ��1,− 3
2 �� and �1, 1

2 �
��1,− 1

2 ��. For two LH1 states, denoted as �lh,�, such cou-
pling will lead to the spin orientations of �lh,+ opposite to
�hh,+, and that of �lh,− opposite to �hh,−. Thus, the total spin
orientation of the 2DHG is conserved, though �hh,+ and
�hh,− have the same spin orientation in the low hole density
regime.

IV. NUMERICAL RESULTS FOR CURRENT-INDUCED
SPIN POLARIZATION IN A TWO-DIMENSIONAL

HOLE GAS

Based on the calculated eigenstates and eigenenergies of
the total Hamiltonian �1�, in this section, we will work out
the spin polarization by using the Bastin version of the Kubo
formula �14� in the first-order Born approximation. Of
course, the validity of such approximation depends on the
vanishing vertex correction as mentioned above.

Our numerical results with an expanded basis set of N
basis functions �N is much larger than 8 used in the previous
section� show that for a quantum well with infinitely high
potential barrier, when increasing N, the eigenenergies very
quickly converge to the exact solutions formulated by Huang
et al.55 For example, for the quantum well with width Lz
=83 Å, several lowest hole subbands obtained with N=20
are almost identical to the exact results. Even for N=8, the
dispersion of the lowest heavy- and light-hole subbands is in
good agreement with the exact results, demonstrating the va-
lidity of the truncation procedure in previous section and
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Appendix A. Figure 1 plots the dispersion curves and spin
splitting of hole subbands in the quantum well in the pres-
ence of an electric field. Due to the heavy and light-hole
mixture effect, the energy minimum of the lowest light-hole
subband, marked by B in the figure, significantly deviates
from the � point.

For the electric spin susceptibility, we calculate �yx only,
because �xx=�yy =0 and �xy =�yx as indicated by Eq. �21�.
After some algebra, we can divide ESS in Eq. �14� into an
intrasubband part �yx

I and an intersubband part �yx
II , which are

expressed, respectively, as

�yx
I =

e�

2�
� d2k

�2��2�



�k
�Ŝy�k
��k
�v̂x�k
�
A


2

2
, �62�

�yx
II =

e�

2�
� d2k

�2��2 �

�
�

Re��k
�Ŝy�k
���k
��v̂x�k
��A
A
�.

�63�

Here, Re denotes the real part, and 
 and 
� stand for the
hole subband. In the first-order Born approximation, the
spectral function A
 can be expressed as

A
 =
2�

��E − E
�2 + �2�2 , �64�

where �= �

2� .
A typical curve for the CISP is plotted in Fig. 2. From the

calculation, we find that the main contribution to CISP
comes from the intrasubband term, which can be understood
by Eqs. �62� and �63�. In the limit �→0, the spectral func-
tion A
 tends to be the delta function 2���E−E
�, making
the intersubband term A
A
� vanish except for an accidental
degeneracy. Several features in Fig. 2 are worth pointing out.
First, in the low-doping regime where only HH1� states
near � point are occupied, spin polarization exhibits a linear

dependence on the Fermi energy. Second, with the hole den-
sity increased, the spin polarization increases at first, then
decreases after reaching a maximum value, and even changes
its sign when the hole density is large enough. Third, when
the doping is so heavy that the light-hole subband is occu-
pied, a sharp peak for the spin polarization may be observed,
marked as P in Fig. 2.

To understand these features, we turn back to Eq. �62�, as
the main contribution to the spin polarization stems from this
intrasubband term. Based on numerical results as well as Eq.
�49�, we adopt a function J
�k� to express the amplitude of
the spin orientation associated with the subband 
, i.e.,

�Sy�

 = J
�k�cos � .

Then, with

�vx�

 =
1

�

�E


�kx
=

1

�

�E
�k�
�k

cos �

and

A

2 =

4��

�
��EF − E
� ,

we rewrite Eq. �62� as

�yx =
e�

4��
�




k

FJ
�k


F� , �65�

where k

F is the Fermi momentum with the hole subband 
.

In the k-cubic Rashba model, in which only the lowest
heavy-hole subband HH1� is concerned, up to the first-
order in , the Fermi momentum can be expressed as k�

F

=
2mhEF

� −�
2mh

2EF

�4 . Combined with Eq. �49�, we obtain

FIG. 1. �Color online� Dispersion relation for a quantum well
with infinite barrier in an electric field. HH1� and LH1� denote
the two lowest heavy- and light-hole subbands, respectively. The
parameters for calculation are the well width Lz=83 Å, the field
strength F=50 kV /cm, �1=7, and �2=1.9.

FIG. 2. �Color online� The calculated ESS versus Fermi energy.
The scattering induced broadening � is taken as 1.65�10−5 eV,
corresponding to the relaxation time �=2�10−11 s. All the other
parameters are the same as in Fig. 1. The spin polarization peak
marked with P corresponds to the energy minimum of the lowest
light-hole subband marked as B in Fig. 1.
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�yx =
e�mhS0EF

��3 +
3e�mh

3S1EF
2

��7 . �66�

The first term on the right hand side of Eq. �66�, resulting
from the spin-independent part, is identical to Eq. �43�, while
the second term, proportional to EF

2 , can be safely ignored in
the low density regime. As shown in Fig. 3, the analytical
results of the electric spin susceptibility �Eq. �66�� agree well
with the numerical ones, demonstrating the applicability of
the k-cubic Rashba model �23� in the low-doping regime.
However, for higher hole density, numerical results show a
drop of the � due to the heavy- and light-hole mixing effect,
which is certainly beyond the simple k-cubic Rashba model.

For numerical results, similar to the derivation above, we
may divide J
 into a spin-dependent part and a spin-
independent one, namely, J
�=J


i +�J

d. Then the ESS can be

expressed as

�yx = �yx
i + �yx

d , �67�

in which the spin-independent and -dependent parts respec-
tively, reads

�yx
i =

e�

2��
�




J

i k
+

F + k
−
F

2
, �68�

�yx
d =

e�

2��
�




J

dk
+

F − k
−
F

2
. �69�

Obviously, �yx
i depends on the average of Fermi wave num-

bers, while �yx
d depends on the Fermi wave number differ-

ence between two spin-split branches. In most cases, owing
to the fact that the spin splitting is small compared to the
Fermi energy, �yx

i will dominate the spin polarization. In Fig.
4�a�, we plot the magnitude of spin orientation associated
with the subband HH1�, denoted by Jh�, and the corre-
sponding spin-dependent part Jh

d and spin-independent part
Jh

i . They are related through Jh
d= �Jh+−Jh−� /2 and Jh

i = �Jh+

+Jh−� /2. Figure 4 indicates that for most values of k, Jh
d is

larger than Jh
i . Compared to the intrasubband contribution in

Fig. 2, the spin-independent magnitude of the spin polariza-
tion Jh

i �green dotted line in Fig. 4�a�� has a similar behavior:
first, linearly increasing with k, then decreasing with k in-
creased, and even changing the sign for larger k.

A pronounced peak of CISP may appear when the Fermi
energy just crosses the bottom of the lowest light-hole sub-
band LH1−. As amplified in Fig. 5, in the dispersion relation
of the subband LH1�, the wave numbers kl�

0 corresponding
to the energy minimum El�

0 significantly deviate from the k
=0 point. Around the energy minimum, the energy dispersion

can be approximated as El��k�=El�
0 + 1

2
�2El��k�

�k2 �k−kl�
0 �2. As-

suming the above energy dispersion and a constant magni-
tude of Jl�, we obtain

FIG. 3. �Color online� Numerically calculated ESS as function
of Fermi energy �black-square line� compared to the analytical re-
sults �red-circle line�.

(b)

(a)

FIG. 4. �Color online� The magnitude of the spin orientation for
�a� the lowest heavy hole subband and �b� the lowest light-hole
subband. In �a�, the black solid line and red dashed line represent
Jh+ and Jh−, respectively, while the green dotted line and blue
dashed dotted line denote the spin-independent part Jh

i and spin-
dependent part Jh

d, respectively. The same notions are also applied
to �b�.
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�yx
� =

e�

2��
kl�

0 Jl��kl�
0 � , �70�

where kl�
0 ��k�

F1+k�
F2� /2, and k�

F1 and k�
F2, respectively, de-

note two different Fermi wave numbers for LH1� �Fig. 5�.
By Eq. �70� and Fig. 4�b�, we can see since Jl+ and Jl− are
large in the absolute value but almost opposite in sign, when
El+

0 �EF�El−
0 , a large spin polarization e�kl−

0 Jl− /2�� is ex-
pected; on the other hand, when EF�El+

0 �El−
0 , the contribu-

tions of LH1� to the spin polarization cancel each other to
some extent, resulting in

�yx =
e�

2��
��kl−

0 + kl+
0 �Jl

i + �kl+
0 − kl−

0 �Jl
d� . �71�

As Jl
i is much smaller than Jl

d or Jl�, and kl+
0 �kl−

0 , both terms
in Eq. �71� are small compared to the case when only LH− is
occupied. Apparently, the peak width depends on the spin
splitting between LH− and LH+.

The temperature dependence of the peak is plotted in Fig.
6. Near the polarization peak, if we only take into account
LH1�, ESS is expressed by

�yx =
e�

2��
�
�

f�El�
0 �kl�

0 Jl��kl�
0 � . �72�

At zero temperature, the Fermi distribution function f�E� be-
comes the step function ��Ef −E�, which reproduces the
above analysis. At finite temperature T, if we approximate
kl�

0 Jl��kl�
0 ���kl

0Jl, and expand the Fermi distribution func-
tion at large kBT as f�E�= 1

2 �1−
E−EF

2kBT � �kB is Boltzmann con-
stant�, then Eq. �72� reduces to

�yx =
e�kl

0Jl

2��

El+
0 − El−

0

4kBT
. �73�

So ESS is proportional to the ratio of the spin splitting of the
LH1 subband, El+

0 −El−
0 , to thermal energy kBT. When kBT is

much larger than the spin splitting, this pronounced spin po-
larization peak will smear out.

Now let us estimate the magnitude of the averaged CISP.
In the k-cubic Rashba model with an applied field F
=50 kV /cm, Eq. �32� gives S0=2.74 Å for Lz=83 Å and
S0=5.77 Å for Lz=100 Å. If the typical relaxation time � is
taken to be 2�10−11 s and an in-plane electric field strength
E0=10 V /cm, the Fermi sphere will be shifted by �k
=eE0� /�=3�10−3 Å−1. By substituting the above data into
Eq. �43�, we obtain �Sy� /nh=0.831% for Lz=83 Å, and
�Sy� /nh=1.75% for Lz=100 Å. Since S0 is proportional to Lz

4,
the spin polarization is very sensitive to the thickness of the
quantum well. Hence, it is preferable to experimentally de-
tect the CISP in a thicker quantum well. The above estima-
tion gives the same order of magnitude for the spin polariza-
tion observed in the experiment of Silov et al.12 In Fig. 7, we
plot the averaged spin polarization �Sy� /nh as function of the
Fermi energy and of the field F in the inset. The CISP is
saturated at about 2% when the field is enhanced.

FIG. 5. �Color online� Dispersion relation of the lowest light-
hole subband LH1�. FIG. 6. �Color online� The spin polarization peak at three dif-

ferent temperatures: 1.2, 12, and 120 K.

FIG. 7.
�Sy�
nh

as function of the Fermi energy. Inset:
�Sy�
nh

as func-
tion of applied field strength F.
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V. SUMMARY

In conclusion, we have systematically investigated the
current induced spin polarization of a 2DHG in the frame of
the linear response theory. We introduced the physical quan-
tity of the electric spin susceptibility � to describe CISP and
give its analytical expression in the simplified k-cubic
Rashba model. Different from the 2DEG, the CISP of a
2DHG depends linearly on the Fermi energy. The difference
in CISP between a 2DHG and a 2DEG results from the dif-
ferent spin orientations in the subband of carriers. We pro-
pose that the k-cubic Rashba coefficient of a 2DHG can be
deduced from the ratio of spin polarization to the current,
which is independent of the impurities or disorder effect up
to the lowest order. We have also carried out numerical cal-
culations for the CISP. The numerical results are consistent
with the analytical one in the low-doping regime, which
demonstrates the applicability of the k-cubic Rashba model.
With the increase in Fermi energy, numerical results show
that the spin polarization may be suppressed and even
changes its sign. We predict and explain a pronounced spin
polarization peak when the Fermi energy crosses over the
subband bottom of the LH−. We also discuss the possibility
of measuring this spin polarization peak.
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APPENDIX A: DERIVATION OF THE k-CUBIC RASHBA
HAMILTONIAN

In this appendix, we present the detailed derivation of the
k-cubic Rashba model by means of the perturbation
method.40–42,48–52 First, we truncate the Hilbert space of the
basis wave functions �12� into the subspace with only the
lowest eight states G0= ��n ,�h� ,n=1,2 ;�h= �

3
2 , �

1
2 �. As

described in Sec. II, by comparing the lowest HH and LH
subband dispersions to the exact solution, the accuracy of
such a truncation procedure has been verified. The truncated
subspace G0 can be further cast into two subgroups, G1 and
G2. G1 contains two lowest heavy-hole states ��1,3 /2� , �1,
−3 /2��, while G2 keeps the other six states, ��1,1 /2� , �1,
−1 /2� , �2,3 /2� , �2,−3 /2� , �2,1 /2� , �2,−1 /2��. In this case,
the Hamiltonian in the subspace G0 can be written in the
form of block matrices as

H8�8 = �H̃2�2 H̃2�6

H̃6�2 H̃6�6

� , �A1�

where

H̃2�2 = �P�1� 0

0 P�1�
� , �A2�

H̃6�2 = H̃2�6
† =	

0 T

T† 0

eFG�2,1� 0

0 eFG�2,1�
R�2,1�k+ 0

0 − R�2,1�k−


 , �A3�

and

H̃6�6 =	
Q�1� 0 R�1,2�k+ 0 eFG�1,2� 0

0 Q�1� 0 − R�1,2�k− 0 eFG�1,2�
R�2,1�k− 0 P�2� 0 0 T

0 − R�2,1�k+ 0 P�2� T† 0

eFG�2,1� 0 0 T Q�2� 0

0 eFG�2,1� T† 0 0 Q�2�

 . �A4�

Here, P�n�, Q�n�, G�n ,m�, and R�n ,m� are given by

P�n� =
�2

2m0
���1 + �2�k2 + ��1 − 2�2��n�

Lz
�2� , �A5�

Q�n� =
�2

2m0
���1 − �2�k2 + ��1 + 2�2��n�

Lz
�2� , �A6�

G�n,m� =
4Lznm��− 1�n+m − 1�

�2�m2 − n2�2 , �A7�

R�n,m� = − 23
�2�3

2m0

2inm��− 1�n+m − 1�
Lz�n2 − m2�

. �A8�

Our aim is to perform a transformation which decouples
the groups G1 from G2, i.e., to make the off-diagonal part

H̃2�6 and H̃6�2 vanish up to the first-order in k and F. We
divide the total Hamiltonian �A1� into three parts

H8�8 = H0 + H1 + H2. �A9�
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The first term H0 is the diagonal matrix elements of H8�8,
given by

H0 = �H̃2�2
�0� 0

0 H̃6�6
�0� � , �A10�

with H̃2�2
�0� =Diag�P�1� , P�1�� and H̃6�6

�0�

=Diag�Q�1� ,Q�1� , P�2� , P�2� ,Q�2� ,Q�2��.
The second term H1 is given by

H1 = �0 0

0 H̃6�6
�1� � , �A11�

where H̃6�6
�1� = H̃6�6− H̃6�6

�0� . The third term H2 contains the

nondiagonal part H̃2�6 and H̃6�2

H2 = � 0 H̃2�6

H̃6�2 0
� . �A12�

There are three types of perturbation terms in H1 and H2: �1�
The k-linear R term couples the state �n , 3

2 � ��n ,− 3
2 �� with

�m , 1
2 � ��m ,− 1

2 ��, where n and m must be of opposite parities
due to the presence of kz=−i�z. �2� The k-quadratic T term
couples �n , 3

2 � ��n ,− 3
2 �� with �n ,− 1

2 � ��n , 1
2 ��. �3� The asym-

metric potential Va couples the states with the same spin
index and different parities.

The perturbation procedure is as follows. First, H2 will be
eliminated by the canonical transformation as

H8�8
�1� = exp�− U�1��H8�8 exp�U�1�� = H8�8 + �H8�8,U�1��

+
1

2
†�H8�8,U�1��,U�1�

‡ + . . . , �A13�

in which U�1� is chosen such that

H2 + �H0,U�1�� = 0,

and the matrix elements read

U�
�1� = −

�H2��

E − E�

,  � � , �A14�

where E denotes the energy of the band  at the � point
�k=0�. After the canonical transformation, the new Hamil-
tonian is given by

H8�8
�1� = H0 + H1 +

1

2
�H2,U�1�� + �H1,U�1��

+
1

2
†�H1,U�1��,U�1�

‡ + ¯ . �A15�

The H0, H1, 1
2 �H2 ,U�1��, and 1

2 [�H1 ,U�1�� ,U�1�] have the
block-diagonal form, while �H1 ,U�1�� is non-block-diagonal
and contains additional terms first order in k. So we divide
H8�8

�1� into three parts again

H8�8
�1� = H0 + H1

�1� + H2
�1�, �A16�

in which H1
�1�=H1+ 1

2 �H2 ,U�1��+ 1
2 [�H1 ,U�1�� ,U�1�], and H2

�1�

= �H1 ,U�1��. We perform the second canonical transformation
U�2�, given by

U�
�2� = −

�H2
�1���

E − E�

,  � � . �A17�

This makes the nondiagonal block matrix H2
�1� zero, leading

to the Hamiltonian

H8�8
�2� = H0 + H1

�1� +
1

2
�H2

�1�,U�1�� + �H1
�1�,U�1��

+
1

2
†�H1

�1�,U�1��,U�1�
‡ + ¯ . �A18�

Now the non-block-diagonal terms of H8�8
�2� vanish up to the

desired order in k and F. Finally, by mapping the Hamil-
tonian H8�8

�2� into the lowest heavy-hole subbands, we obtain
the k-cubic Rashba Hamiltonian Eq. �23�.

To obtain the corresponding spin operators in the lowest
heavy-hole basis, we should apply the same canonical trans-
formations U�1� and U�2� to the spin operators Si �i=x ,y ,z�.
In the eight-state subspace G0, we find that the spin operator
has the block-diagonal form Si=Diag�Si

�1� ,Si
�1���i=x ,y ,z�,

because there are no matrix elements between the states with
different confinement quantum number n. Therefore, Si

�1� is a
4�4 matrix, given respectively by

Sx
�1� =

1

2	
0 0 3 0

0 0 0 3

3 0 0 2

0 3 2 0

 , �A19�

Sy
�1� =

i

2	
0 0 − 3 0

0 0 0 3

3 0 0 − 2

0 − 3 2 0

 , �A20�

Sz
�1� =

1

2	
3 0 0 0

0 − 3 0 0

0 0 1 0

0 0 0 − 1

 . �A21�

Then we apply the transformations U�1� and U�2� to the spin

operators, obtaining the new spin operators S̃i=Si+ �Si ,U
�1��

+ �Si ,U
�2�� as presented in Eqs. �29�–�31�.

APPENDIX B: HOLE RASHBA TERM

The hole Rashba term has recently attracted the attention
of many researchers.36,41,56 The hole Rashba term breaks the
inversion symmetry40,42 and is expressed as
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ĤR = �	
0

i3

2
k− 0 0

−
i3

2
k+ 0 ik− 0

0 − ik+ 0
i3

2
k−

0 0 −
i3

2
k+ 0


 , �B1�

where �=r41
8v8vF, r41

8v8v is a parameter as already given by
Winkler for several materials40 and F is the field strength. If
we neglect other asymmetrical potentials and only consider

the Rashba term, then the total Hamiltonian is Ĥ=HL+Vc
+HR. By applying the same perturbation procedure as in Ap-
pendix A, we find that both the Hamiltonian and the spin
operator have a structure identical to the asymmetrical po-
tential case, as well as the same effective mass mh, S1, and
Eq. �34�, except for the Rashba coefficient given by

 =
3�Lz

2

4�2 �B2�

and the spin operator parameter

S0 =
3�m0Lz

2

4�2�2�2
. �B3�

Here, the hole Rashba coefficient  is proportional to Lz
2,

while for the asymmetrical potential case, it depends on
Lz

4. So in most realistic quantum wells, the contribution
from the asymmetrical potential plays a more important role
than the hole Rashba term, at least 1 or 2 orders of magni-
tude larger. The physical reason for this may be understood
from the origin of the hole Rashba term. The more gen-

eral form of the Hamiltonian should be Ĥ= Ĥk·p+Vc+eFz,

where the multiband k ·p Hamiltonian Ĥk·p includes not
only the heavy- and light-hole bands, but also the con-
duction band, spin split-off band, and remote bands. When
we project the Hamiltonian into the subspace of the
heavy- and light-hole bands, the combined effects of the
eFz and k ·p mediated by other bands lead to the hole
Rashba term, which has a much smaller influence than
that directly coupled by the asymmetrical potential. There-
fore, hole Rashba term is neglected in this paper for sim-
plicity.
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